organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hydrogen bonding in bis(triphenylphosphine-*P*)iminium hydrogensulfate chloroform solvate

Ilia A. Guzei,* Jeffrey S. Dougan and Paul M. Treichel

Chemistry Department, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA Correspondence e-mail: iguzei@chem.wisc.edu

Received 6 December 2000 Accepted 20 April 2001

The title compound, $C_{36}H_{30}NP_2^+ \cdot HSO_4^- \cdot CHCl_3$, consists of discrete ions and well separated chloroform solvate molecules. The central feature of the structure is $O-H \cdot \cdot \cdot O$ hydrogen bonding between two hydrogensulfate ions related by a crystallographic inversion centre. The chloroform solvate molecule takes part in a well defined $C-H \cdot \cdot \cdot O$ hydrogen bond.

Comment

We report herein the structure of $[Ph_3P=N=PPh_3]^+$ $[HSO_4]^- \cdot CHCl_3$, (I), isolated from chloroform and heptane as a by-product of the recrystallization of $(PPN)[Re_3Cl_9(SO_4)]$ [PPN is bis(triphenylphosphine)iminium], which was prepared from the reaction of $(Re_3Cl_9)_x$, PPNCl and H_2SO_4 in water.

The structure of (I) consists of discrete ions and well separated chloroform solvate molecules. The location of the H atom on O1 of the hydrogensulfate anion is unequivocal, as indicated by the longer S-O1 distance [1.541 (3) Å] compared with the other S-O bond lengths [average 1.428 (11) Å]. In 30 hydrogensulfate ions reported to the Cambridge Structural Database (CSD; Allen & Kennard, 1993), the corresponding values averaged 1.53 (3) and 1.43 (2) Å, respectively. The central feature of the structure is hydrogen bonding between two hydrogensulfate ions related by a crystallographic inversion centre (Fig. 1). Due to the symmetry considerations, both hydrogen bonds have identical parameters. The O1 \cdots O2(1 - x, 2 - y, 1 - z) distance is 2.633 (4) Å, while the O-H \cdots O angle is 155°. The corresponding values for 23 similar HSO₄⁻-HSO₄⁻ hydrogen

bonding interactions in structures reported to the CSD were 2.58 (4) Å and 164 (10)°. The only structure with two symmetrical hydrogen bonds between two hydrogensulfate moieties [average $O \cdots O$ separation 2.63 (1) Å and $O - H \cdots O$ angle 150 (2)°] was reported for [Fe(TTP)(HSO₄)] $\cdot 0.5C_6H_6$ (TTP is tetraphenylporphinate; Scheidt *et al.*, 1988). In addition, the chloroform solvate forms a weak but well defined hydrogen bond to the sulfate anion, C37-H37 \cdots O3($-x + \frac{3}{2}$, $y - \frac{1}{2}, \frac{1}{2} - z$). The C $\cdots O$ separation was found to be 2.990 (7) Å, while the C $-H \cdots O$ angle measured 174°. The environment about the S atom is distorted tetrahedral, with the O-S-O angles ranging from 105.38 (19) to 113.5 (3)°. The [Ph₃P=N=PPh₃]⁺ cation is rather typical. The P-N distance [average 1.589 (3) Å] is slightly longer than the P=N distance of 1.576 (18) Å obtained by averaging 562 P-N

Figure 1

The structure of (I) showing hydrogen bonds between symmetry-related species. The displacement ellipsoids are shown at the 30% probability level.

distances in PPN⁺ ions reported to the CSD. The P–N–P angle in (I) $[134.42 (19)^{\circ}]$ is noticeably smaller than the average angle of 143 (8)° found in the same 562 PPN⁺ cations in the CSD. The large s.u.'s calculated for the two parameters for complexes reported to the CSD reveal that the geometry about the N atom in PPN⁺ ions may vary substantially. Both P atoms in (I) are tetrahedral, with the average C–P–C and C–P–N angles averaging 109 (3)°.

Experimental

Crystal data

$C_{36}H_{30}NP_2^+ \cdot HSO_4^- \cdot CHCl_3$
$M_r = 754.99$
Monoclinic, $P2_1/n$
a = 15.3399 (13) Å
b = 16.2211 (13) Å
c = 15.6888 (13) Å
$\beta = 113.1010 \ (10)^{\circ}$
$V = 3590.8 (5) \text{ Å}^3$
Z = 4

Data collection

Siemens CCD area-detector diffractometer φ and ω scans Absorption correction: empirical (*SADABS*; Blessing, 1995) $T_{\min} = 0.832, T_{\max} = 0.917$ 27 441 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.153$ S = 0.996269 reflections 434 parameters $D_x = 1.397 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 4430 reflections $\theta = 2-26^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 173 (2) KPrism, colorless $0.43 \times 0.20 \times 0.20 \text{ mm}$

6269 independent reflections 4010 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 25.0^{\circ}$ $h = -18 \rightarrow 16$ $k = -19 \rightarrow 19$ $l = -18 \rightarrow 18$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^i$	0.84	1.85	2.633 (4)	155
C37−H37···O3 ⁱⁱ	1.00	1.99	2.990 (7)	174

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1168). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. & Kennard, O. (1993). *Chem. Des. Autom. News*, **8**, 1, 31–37. Blessing, R. H. (1995). *Acta Cryst.* A**51**, 33–38.

Scheidt, W. R., Lee, Y. J. & Finnegan, M. G. (1988). Inorg. Chem. 27, 4725– 4730.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXTL Reference Manual. Version 5.03. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.